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SUMMARY

An spproximaste method for rapid determination of the pressure
change for subsonlc flow of e compressible fiuid under the simultaneous
action of heat transfer, friction, rotation, and erea change is de-
veloped. In the development of this method, the momentum equation was
gpproximated and rearranged for a convenlent solution employing charts.
This report presents both the analysis involved in simplifying the mo-
mentum equation and the charts necessary for obtaining particular solu-
tions. The charts provide a step-by-step solution which converges to
an exact solution as the number of steps 1s increased, An illustrative
example and comparison with more rigorous numerical solutions with con-
ditions typilcel for air-cooled turbine blades are included. These com-
parisons show that the solution converges rapidly to provide good
accuracy.

INTRODUCTION

The effective deslgn of ducts to accommodate air flow requires par-
ticular solutions of the momentum equation for determining the pressure
changes encountered. Simplified methods which give an accuracy suffi-
cient for engineering purposes asre in demand. An approximste method
for determining such particular solutions has been developed for the
one-dimensional flow of a compressible fluid under the influence of heat
transfer, friction, rotation, and area change.

A number of studies of one-dimensional flow of a compressible fluid
have been published. Reference 1 presents a rather complete treatment
including & form of the momentum equetion with heat transfer, friction,
and area change which is suitable for numerical integration. Ag an aild
for expediting the numerical integration, coefficients of the differ-
entials in the momentum equation of reference 1 have been tabulsted as
"influence" coefficients in reference 2. The analyses of references 1
and 2 have been extended in reference 3 to include rotational forces.
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Reference 3 also provides a form of the momentun equation suitable for
numerical integration and tabulates "influence" coefficients for ex-
pediting the calculations. However, in all cases, the numerical inte-
grations as employed in references 1 to 3 are tedious and time consum-
ing. Particular solutions sultable for rapid determination of pressure
changes for one-dimensional flow with both arbitrary and specific heat-
input distributions have been presented in references 4 to 7. However,
these solutions include only heat treansfer and friction. In addition,
reference 8 developed an approximate solutlon for constant flow area in-
cluding rotation as well as heat transfer and friction. The approxima-
tions of reference 8 were based upon experimental data for cooled tur-
bine blades tested under statlic conditions. Although the time required
for a particular solution of the momentum equatlion and subsequent eval-
uation of the pressure change was appreclably reduced when the epproxi-
mete solutlion of reference 8 was utilized, the time required for a large
number of particular solutions, as frequently required for design pro-
cedures, remains very lengthy. In addition, reference 8 does not account
for flow-ares changes frequently encountered in actual practice.

Since & method for the rapld determination of the pressure change
through ducts wilth heat transfer, friction, rotetion, and area change
is in demand, the momentum equatlion has been approximated and rearranged
for a convenlent solution employing charts. The purpose of the present
report is to present the analysis involved in simplifying the momentum
equation so that a graphical solution is possible and to present the
charts necessary for obtaining particular solutions for subsonic flow.
Heat transfer, friction, rotation, and srea changes are all included in
the solutions. The charts provide & step-by-step solution which con-
verges to an exact solution as the number of steps is increased and is
limited only by the graphicel accuracy. Comparisons are also made with
the solutions determined from the more exact numerical iIntegration of
reference 3 for typical exsmples of air-cooled turbine blades.

ANATYSTS

The general momentum equation for one-dimensional flow is approxi~
mated and rearranged to form the basis for the construction of charts
sulteble for the determination of the Mach number change with flow under
the simultaneous action of heat transfer, friction, rotation, and area
change. A relation between the Mach numbers and pressures is finelly
determined such that charts mey be employed to evaluate the pressure
changes in & duct once the Mach number changes are known. The energy
changes may be erbitrarily specified in terms of the total~temperature

changes and mey be evaluated by a procedure such as that given in ref-
erence 3,
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Evaluation of Mach Numbers

The differential form of the general momentum equation for one-
dimensional flow is (ref. 3)

ar

dP - Fpg dx + oV 4V + o= = 0 (1)

where X increases in the flow direction (ell symbols are defined in
appendix A). The differential drag force can be expressed by the
equation

2 2 2
= OV 59 = ¢ BV = A v
Fg=f 5~-d8 =f 551 =5 7 A dx (2)

and the body forces per pound of weight flow, as resulting from rota-
tion gbout a central axis, can be expressed by the eguation

2
or
- (=)

If the differential momentum change is replaced by the equivalent ex-
pression

oV av = a(pv?) - v a(pV) (4)

and equations (2) to (4) are substituted into equation (1), the momentum
equation, as integrated between stations x and x+Ax, becomes

Prinx : (DVz)thx (V) i
dP + a(ev3) - v a(pv) -
Py (ov2), (ov)

X

X+AX x+Ax 2
olrp dx + A V" ax = 0 (5)
D, 2
X X
The first two terms of equation (5) can be integrsted directly. How-
ever, the last three Integrals of equation (5) cannot be evaluated
directly and therefore are spproximasted in order to obtain forms which
can be conveniently solved. The third integral, which exists only in
the case of area change, and the fifth integral, which expresses the
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drag forces, may be counveniently aspproximsted by using the integrand as
the average of the values at the end points. That is,

(QV)Xfo (v v )
Valor) m XX gy )] (8)

(eV),

and

X+HOX
4 V2 gy o x| Hxeix <PVZ) o Ix (pvz)x] (1)
Dy 2 2 Dh,x%Ax 2 Jxaix Dh,x 2

In order to facilitate a convenient solution, the fourth integral,
which expresses the rotational forces in eqpation (5), will be approxi-
mated by elther

X

X+HAX .
&/ﬁ WPrp dx = a@rxprx (Sa}

or

X+HAx - i
f (nzrp dx =~ UJZI‘X_!_AXDX_FAXAX (Sb)
X

depending upon whether the solution is Initiated with the conditions at
the station x or the stgtion x+Ax., Since the integrand of either
equation (8a) or (8b) is approximated by the.value at a single end point,
the epproximastion is in general less sasccurate than those given by equa-
tions (6) and (7). Equations (6) to (8) become' identities in the limit
as Ax gpproaches zero.

Because the denslty and velocity variations from stations x to
x+Ax are approximated by equations (6), (7), and (8), the energy equa-
tion must be employed only to determine the total energy change.

When the approximations given by equations (6), (7), and (8a) are
substituted into equation (5) and the first two terms of equation (5)
are Integrated, the spproximste momentum equation becomes
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Vv V.
Prore = Px + (07%)punx - (0V%)y - —x:—z—x—*’—a"— [(oV)ganx = (oV)y] -

4f 2 4f 2
2 Ax XHAX (ﬁV ) p.o (fv )
®fr p AX + — + S =0 (9=)
x 2 [Dh,x+Ax 2 /xwxx  Dn,x 2 /x

However, if equation (8b) is used instead of equation (8a), the aspproxi-
mate momentum equation becomes

V. +V
Pt = By + (V8 )xate = (0V2)x = Ep K [(ov), - (o), ] -

4if 2 4f 2 !
2 Ax XHAX (pV ) p 4 (pV )
°r :p :Ax+_ b om— | — =0 g‘b)
x x 2 [éh,x+&x 2 x+HAX Dh,x 2 (

If the variables of equstions. (9a) and (9b) are changed by employing
the continulty equation, the relation between the total and static tem-
peratures, and the equation of state, the two forms of the approximaste
momentum equation can be reduced to the useful relations (appendix B)

’T' wPr_Ax
F(Meinxs Aernx) = ‘\IT:‘:Ax (A::Ax) {:F(Mx:%c) + IT‘J,{ G(Mx)]
(10=)
and
Ty a@rx
N T S
(10p)
where
F(M,4) = . e W (11)
M (1 + Y_é.l Mz)lﬁ [: * :[
(1 + -1 M2>1/2
a(y) = 2 (12)

gRM
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s lx Ay
SR bl el o)
b T AR ) =

The total-temperature ratio in equetions (10) may be evaluated from
a solution of the energy equation such as presented in reference 3.
Evaluation of Pressures

By applying the continuity equation and the equation of state, the
welght flow can be expressed as

or
PA (& [T 1/2
¥ = AR () (16)

Since the relation between the total and static temperature as glven
by the energy equation is

I o1 +1=1m2 - (17)
T 2
equation (16) can be rewritten in the form
Y_@ =& M (1 + r-1 M2)l/2 (18)
PA TNR 2

Using P'/P = (T'/T)Y/(Y-l) to express equation (18) in terms of the
total pressure gives

_2§r+1)
@='JEM<1 +L‘£M2) -l (19)
P'A R 2
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Equations (18) and (18) are plotted in figure 1 for 1 = 1.40 with
wp/T'/PA and w T‘/P'A as the ordinates and M as the abscissa.
From the Mach number the value of elther wq[T—' /P'A or wp/T_'- /PA can
be determined from figure 1. Then from the given conditions and ares,
P or P' can be computed.

CAICULATION PROCEDURE

Equations (10a) and (10b) represent the finel forms of the momentum
equatlon to be used in solving for the Mach number at either station x
or x+Ax. If the conditions are known at station x, the Mach number at
station x+Ax 1is determined from equation (10a); while if the conditions
are known at station x+Ax, the Mach number at station x 1is determined
from equation (10b). Increasing values of x, corresponding to & posi-
tive Ax, must be in the flow direction. A given duct can be divided
into an arbitrary number of increments in Ax (not necessarily of the
same length), and the Mach number change through that duct can then be
computed by progressing stepwise from the end where all conditions are
kmown. The size of each increment should depend upon the accuracy de-
sired. Subsequent examples will indicate the convergence of the solu-~
tion as Ax 1s decreased.

Both F(M,A) and G(M) have been plotted in figure 2 for air with
Y = 1.40 to expedite the solution. Since Yy has a secondary effect
on the Mach number change and the variation of Y encountered in air
flow is small, the counsideration of other values of Yy i1s unwarranted.

The procedure for determining the Mach number change and thus the
pressure change with sir flowing in a duct is to use equation (10a) or
(10p) end figures 1 and 2. For example, the procedure for determining
the Mach number at station x from the conditions at station x#Ax is
to first evaluate A, ., (eq. (14)). From the value of the Mach number

at station x#Ax and My Ay, the values of F(MyiAx, &xtAx) and
G(M,,ny) 8re read from figure 2. Then, with the specified values of

WPry n Thiny 808 AT AT (A/Any) s P(M,A) is calculated

from equation (10b). From F(M.,A.) end A, (eq. (13)), the Mach num-

ber at station x 1s read from figure 2. Once the Msch numbers are
known, the pressure change can be determined from figure 1., 'To illus-
trate thls procedure, a typilcal sample calculation for an air-cooled
turbine blade including heat transfer, frictionm, rotatlion, and area
change has been carried out in table I with the passage divided into
two equal parts. Double columns (column 9 and columns 20 to 27) are
included in the sample calculation setup in teble I so that the calcu-
lations could proceed from either the x or x#\x station. For esach
of these double columns, the left column is applicasble if the solution
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is initiated at station x#Ax, while the right column is spplicable if
the solutlon is initisted at station x. The first 11 columns of table
I give the conditions which must be prescribed. Although the friction
coefficient f is assumed to be the same at both the x and x#x )
stations, 1t may be allowed to vary if greater accuracy seems warranted.
The remaining columns of teble I give the computations required to de- |
termine the Mach number at either station x or x+A\x. The sample cal-
culation shown is for the determination of the Mach number at station

x from conditions at statlion x+Ax,

RESULTS AND DISCUSSION

In order to evaluate the accuracy of the solution presented herein,
calculetions were made for conditions typical of those occurring for
air-cooled turbine blades (1) by use of the charts and (2) by the method
of numerical integration presented in reference 3. The results of these
calculations employing equation (10b) with 1, 2, and 4 steps with incre-
ments of equal length are tebulated in table IT and compared with the
results obtained from the more detalled numerical methods of reference
3. Three cases are illustrated in table II: (I) heat transfer and
friction; (II) heat transfer, friction, and rotation; (ITI) heat transfer,
friection, rotation, and area change. For the filrst two cases, the air
temperature was assumed to vary linesrly from the inlet to the exit.
However, for the third case, the air temperature was varied exponentially
to correspond with flow inside a duct heated by crossflow and with con-
stant inside and outside surface heat-transfer coefficients. The total
pressures used for evaluating the percentage differences between those
obtained by the two solutions were computed from figure 1 and the known
conditions and areas.

It is shown in teble II that the solutions converge rapidly. In
addition, the comparison between the two solutions shows that good sgree-
ment 1s obtained by using only two steps. Even for the third case, the
computed total pressures agreed within 4 percent for only two steps. In
*his cese the disagreement was essentlally elgminated by using four steps.
Solutions were also made with eilght steps, but for the conditions used
in the exasmples of table II, the improvement over the use of four steps
was probably not within the accuracy of the charts. The approximations -
given by equations (6) to (8) are least accurate at the higher flow Mach
numbers where slight changes in the total pressure cause large changes
in the Mach number (fig. 1) and, therefore, large changes in the veloc-
ity and state conditions. For this reason, the Mach numbers used in the
examples of table IT are intentionally high. It should be pointed out
that the accuracy of the approximations employed in equations (10) are
dependent upon Mach number changes, and not the passage length, when ro-
tational forces are neglected. Thus, the accuracies shown by the results
of teble IT are indicative of the accurascles which would be obtained for
longer passages with similer Mach number changes due to heat transfer,
friction, and ares change alone. "’
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In many cases the air temperature varies exponentielly with x as
in cese III of table II. In order to check the effect on the Mach num-
ber change of using the more easily obtailnsble linear ailr temperature
distribution instead of an exponential variation, the examples presented
in table II were recomputed as follows: (1) Cases I and II, which were
calculated for table IT with a linear air temperature distribution, were
determined for an exponential distribubtion, and (2) case IIT was com-
puted for & linear varistion instead of the exponentisl air temperature
distribution used for teble II. The resulits of these calculations showed
that the dlfferences between the two variations were negliglble and prob-
ably of the same order of magnitude as the accuracy of the charts. For
this reason, it appears that although the alr temperature might vary ex-
ponentially with x, for convenlence a linear variation may be assumed
for evaluating the temperatures needed for the incremental subdivisions.

CONCLUDING REMARKS

A method is developed for the rapld determination of the Mach num-
ber change and pressure change for the flow of a compressible fluid in
a duct with heat transfer, friction, rotation, and area change. The
method uses a step-by-step integratlion which, when applied to specific
examples typical for air-cooled turbine blades, converged rapldly and
provided good accuracy with, at most, only four steps. In addition, for
these specific examples, a negligible difference occurred between using
&8 linear or an exponential temperature variastion along the duct length.
This result indicates that the more convenient linear temperature vari-
gtion may be used for evaluating the temperatures for the incremental
subdivisions if the actual temperature variles exponentlally, as fre-
quently occurs in practice.

Lewis Flight Propulsion Laboratory
Netional Advisory Committee for Aeronautics
Cleveland, Chio, April 14, 1954
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

Tl

flow area, sq ft
duct length or span, ft

hydreaulic diemeter, 4A/1, ft
generalized body force, Ib/lb of coolant, or/g (eq. (3))
drag force, 1lb

1

r=1
2

)17? [1 - ﬁf—z- (A - 4)] (eq. (11))

M(l+ M?

friction coefficient

(1 + 2 Mz)l/Z |
gRM (eq. (12))

standard acceleration due to gravity, 32.2 £t/sec?

wetted perlmeter, ft

Mach nunmber relative to passage ) -
static pressure, 1b/sq ft abs

total pressure with respect to passage, Ib/sq ft

gas constant, 53.3 ft-1b/(1b)(°R)

radius, ft

surfece area, sq ft

static temperature, °r

total temperature with respect to passage, °Rr
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v velocity relative to passage, ft/sec
W weight flow, lb/sec
X distance measured from passage inlet in flow direction, ft
T ratio of specific heats, 1,40
4f
Ak £ - 2< "x - l) (eq. (13))
Dh,x Ay +ix
4f AL <
Mg - — - 2@”& - 1) (eq. (14))
D
h, X+AX Ay
p mass density, slugs/cu ft
Q werx
IIII
w angular velocity, radians/sec
Subscripts:
e exit of passage
i inlet of passage
x distance measured from passage inlet in flow direction, ft

11
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APPENDIX B

DERIVATION OF APPROXIMATE MOMENTUM EGUATION

Upon collecting terms and employing the relstions

e () 1 3 () 2 G

and o

v (oV) 4 \J (oVZ) (V)
(V) <_x—2+A-X') = (PV)y (pV)xx ( xja‘ﬂx) 2 e (0¥ ) anx

equation (9a2) becomes

(0V2) gang [_2 NGIR xmAx]

P - P, -
XHAx x 4 (ov)x+Ax Dh X+Ax

(ov2), [_z , (pv)xmx 4F_Ax

I G Dh . }- oPr p Ax = 0 (20s.)

and equation (9b) becomes

(gvz)x+Ax (oV)y AF A X
e S S R G v T
(o), (oV)y ar
4 [—2 p(pV-)i-AX thix} - w?rx+éxpx+ﬂxéx =0 (20b)

If the continuity equation is employed to obtailn the relation

= (oVA), = (pVA)_ .

or

(pV)x Ay Ay

(V) ine A, (21)
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and if the simplifying notatlions

W

e - ol (e
Lond®  (Brnx

b = - - e ) (e

are used, equation (20a) becomes

V2 (ev2),
Pyiax ~ Px "('F%(LAX— (AX-I-AX - 4) +_p4—_ (A - 4) "ngxpx"
(228)
and equation (20b) becomes
(pv?) G v2)
Pestx =~ Fx - ____Zziéi(Ax+Ax 4y ——F(A - - A Te AkPriax = ©
(22p)

A more convenient form of equations (22a) and (22b) can be obtained if
the variables are changed by employling the equation of state, the energy
equa.tion, and the continuity equation. From the equation of state,

oVZ2 can be expressed as : :

oV ='.g.§5.v2 = yPM° (23)

In addition, the static pressure can be eliminated by using the con-
tinuity equation and the equation of state as follows:

)5
W o= gpAV = = AV (24)
or
wRT w [T'R | T 1
P =iV =%Nyg NT & (25)
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where the total-~ to static-temperature ratio can be eliminated by using
the energy equation in the form
r-1

1 +TM2 ' . (17)

Tt
T
to give the expression

w |T'R 1 '
P=— (28)
A 172

\re 'M(l + Y_glmz) /2

Finally, epplication of the continulty equation gives

Prp = WLP - ¥I' 1 (27)
gPAV gA ¥

o= X ’T_ T 1
Ry ng];M (28)

or, by incorporating equation (17) in equation (28),

o - v [T (1+—2 M
Ag \reR M
If equations (23), (26), and (29) are substituted into equations (22a)
and (22b) and wa/Rfyg 1is factored out, the two forms of the approxi-
mate momentum equation become

N s 1 [ ™ ]
iz|t - -

X+AX
Ax f .1l 2 T (g - 4)
MXﬁﬁx\l + _Er'Mx+ax>

y-1 2)1/2

(29)

NI 1 ™ AT (1 + L2 M}'ﬁ;)l/ ?
A, 7z - T (& - - % T =0
(o + 50 )
(30a)

and
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T rix [ ™ enx ]
izt 7 (Bxeax - 4)|-

ik Mx+Ax(l + T—;—l- M?(—I—AX)

1/2
VTx 1 ™ NTxAx (lJ’%M)z(%x)/
i R S e w2 My =°
(1 + TE o

(30p)

Upon simplifying, rearranging, and employing the definition of &, equa~
tion (30a) becomes

T asz
F(Myiner Beray) = N T e (AX;’AX) [F(Mx A) + —m G(Mx)] (102)

and equation (30b) becomes

7( T = T}‘HAX ( Ay mzrx-hAx
My, AT = T3 Aorx F(Mx-i-Ax"%c-!-Ax) - T G(Mx-l-Ax)
(100)
where
P(u,2) = Ll 2 (] (1)
M(l + T—;}- MZ)
- 1/2
o(m) = (- 72 (12)
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TARLE T. -~ SAMPTE CATCULATTION ARD SETUP

Step| (1)) (2) | (3) (4) (5) (e) [(7)] (8) (9) (10) | (1) | (12) (13) | (14) (15)
by 8%, | Ay [ A | Dnyxe (Pnxvacr | T |Txgaes| Tptoce | P [ @ £ A Ao [Axan | T | AfAx
T 1P | gq £t | 8q £t £t ft |[°R | °R Pt |rt |Tad/sec (3)/(2) |& | Dp,x’
L/(1Z)|(T)/(8) 4=§L5Li5'dJ
1 0.3| 0.15| 0.000403 |0, 000).94 |0. 00668 |0,0044 (970| 1180 |1.417 798 |0.0065] 2.108 |0.4744| 0.8362) 0,5838
A 0.5| 0.15] 0.000590 {0, 000409 |0.0074910, 00668 |(768| 970 |1.267 796 |0.0065| 1.443 10.6930| 0.7866| 0.5207
step| (18) (17) (18) (19) (20) (21) (22)
stex | A, B | oo [T | OTaadt | afbe (g || M) | G0L)
?Em;) (16)-2 [{12)-1] -(:Le)-zt%?.s)-ﬂ Ay NTiar | " Theae B A | 08
5 15y Y2 | (10)2(9)(2) | (20)3(9)(2)
o ' (8) 7
1 C.8864 -1.632 0.1648 0.4337 116.1 0.629 0.963
2 0.5838 ~0,3653 0.0302 0,6146 124.2 0.2105 2.80
Btep ' (23) (24) (25) (28) (27)
Pyt Beae) PO A)| Pt [ arn | [FObpnes B = | [P0 AD + [P A | PO neobyin), | M (Moo
T T7 o?r 25
XX x PIT ¥OX 25)(19))
(@(Mesac))s | (605, | Trom GOt iy o)), &fﬂ%]x L i
{zo¥{22) | {20){22) {23)-{24) (23)+{24)
1 2.345 0.1118 2.235 5,148 0.2105
2 5.027 0,348 4,879 7.6813 0.1350

OSTE NL VOVM

LT
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TABLE IT. - COMPARISON OF RESULTS FROM NUMERICAL AND

GRAPHICAL SOLUTIONS

? -
Case| T; A, |Exit Inlet Inlet Mach (P i ) ref (Pi) chart
T i Mach Mach number My (1)
e e |number,|number from charts i‘ref
O ! Trial Trial
from 8
ref. 3| 3 2 4 1 2 4

81/0.7595{1.0 | 0.833 | 0.419]0.406 [0.416{0.418|0,0310| 0.007 [0,003
br1| .6864[1.0 .800 .505| .472 | .498} .50l .0510| .008 . 0086

€III| .658 |3.04 .629 .141 1 .1232 .135] .140| .134 .042 . 009

®Heat transfer and friction.
Hest transfer, friction, send rotation.

CHeat transfer s friction, rotation, and area change.
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